
CHAPTER 13

THE PHASE RULE AND PHASE DIAGRAMS

We encountered the Gibbs phase rule and phase diagrams in Chap. 8 in connection with

single-substance systems. The present chapter derives the full version of the Gibbs phase

rule for multicomponent systems. It then discusses phase diagrams for some representative

types of multicomponent systems, and shows how they are related to the phase rule and to

equilibrium concepts developed in Chaps. 11 and 12.

13.1 THE GIBBS PHASE RULE FOR MULTICOMPONENT SYSTEMS

In Sec. 8.1.7, the Gibbs phase rule for a pure substance was written F D 3 � P . We now

consider a system of more than one substance and more than one phase in an equilibrium

state. The phase rule assumes the system is at thermal and mechanical equilibrium. We

shall assume furthermore that in addition to the temperature and pressure, the only other

state functions needed to describe the state are the amounts of the species in each phase;

this means for instance that surface effects are ignored.

The derivations to follow will show that the phase rule may be written either in the form

F D 2C C � P (13.1.1)

or

F D 2C s � r � P (13.1.2)

where the symbols have the following meanings:

F = the number of degrees of freedom (or variance)

= the maximum number of intensive variables that can be varied independently while

the system remains in an equilibrium state;

C = the number of components

= the minimum number of substances (or fixed-composition mixtures of substances) that

could be used to prepare each phase individually;

P = the number of different phases;

s = the number of different species;

r = the number of independent relations among intensive variables of individual phases

other than relations needed for thermal, mechanical, and transfer equilibrium.
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If we subdivide a phase, that does not change the number of phases P . That is, we treat

noncontiguous regions of the system that have identical intensive properties as parts of the

same phase.

13.1.1 Degrees of freedom

Consider a system in an equilibrium state. In this state, the system has one or more phases;

each phase contains one or more species; and intensive properties such as T , p, and the

mole fraction of a species in a phase have definite values. Starting with the system in this

state, we can make changes that place the system in a new equilibrium state having the

same kinds of phases and the same species, but different values of some of the intensive

properties. The number of different independent intensive variables that we may change in

this way is the number of degrees of freedom or variance, F , of the system.

Clearly, the system remains in equilibrium if we change the amount of a phase without

changing its temperature, pressure, or composition. This, however, is the change of an

extensive variable and is not counted as a degree of freedom.

The phase rule, in the form to be derived, applies to a system that continues to have

complete thermal, mechanical, and transfer equilibrium as intensive variables change. This

means different phases are not separated by adiabatic or rigid partitions, or by semiper-

meable or impermeable membranes. Furthermore, every conceivable reaction among the

species is either at reaction equilibrium or else is frozen at a fixed advancement during the

time period we observe the system.

The number of degrees of freedom is the maximum number of intensive properties

of the equilibrium system we may independently vary, or fix at arbitrary values, without

causing a change in the number and kinds of phases and species. We cannot, of course,

change one of these properties to just any value whatever. We are able to vary the value

only within a certain finite (sometimes quite narrow) range before a phase disappears or a

new one appears.

The number of degrees of freedom is also the number of independent intensive vari-

ables needed to specify the equilibrium state in all necessary completeness, aside from the

amount of each phase. In other words, when we specify values of F different independent

intensive variables, then the values of all other intensive variables of the equilibrium state

have definite values determined by the physical nature of the system.

Just as for a one-component system, we can use the terms bivariant, univariant, and

invariant depending on the value of F (Sec. 8.1.7).

13.1.2 Species approach to the phase rule

This section derives an expression for the number of degrees of freedom, F , based on

species. Section 13.1.3 derives an expression based on components. Both approaches yield

equivalent versions of the phase rule.

Recall that a species is an entity, uncharged or charged, distinguished from other species

by its chemical formula (Sec. 9.1.1). Thus, CO2 and CO3
2� are different species, but

CO2(aq) and CO2(g) is the same species in different phases.

Consider an equilibrium system of P phases, each of which contains the same set of

species. Let the number of different species be s. If we could make changes while the
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system remains in thermal and mechanical equilibrium, but not necessarily in transfer equi-

librium, we could independently vary the temperature and pressure of the system as a whole

and the amount of each species in each phase; there would then be 2CP s independent vari-

ables.

The equilibrium system is, however, in transfer equilibrium, which requires each species

to have the same chemical potential in each phase: �
“
i D �’

i , �
”
i D �’

i , and so on. There

are P�1 independent relations like this for each species, and a total of s.P�1/ independent

relations for all species. Each such independent relation introduces a constraint and reduces

the number of independent variables by one. Accordingly, taking transfer equilibrium into

account, the number of independent variables is 2C P s � s.P � 1/ D 2C s.

We obtain the same result if a species present in one phase is totally excluded from

another. For example, solvent molecules of a solution are not found in a pure perfectly-

ordered crystal of the solute, undissociated molecules of a volatile strong acid such as HCl

can exist in a gas phase but not in aqueous solution, and ions of an electrolyte solute are

usually not found in a gas phase. For each such species absent from a phase, there is one

fewer amount variable and also one fewer relation for transfer equilibrium; on balance, the

number of independent variables is still 2C s.

Next, we consider the possibility that further independent relations exist among in-

tensive variables in addition to the relations needed for thermal, mechanical, and transfer

equilibrium.1 If there are r of these additional relations, the total number of independent

variables is reduced to 2C s � r . These relations may come from

1. reaction equilibria,

2. the requirement of electroneutrality in a phase containing ions, and

3. initial conditions determined by the way the system is prepared.

In the case of a reaction equilibrium, the relation is �rG D P
i�i�i D 0, or the equivalent

relation K D Q
i .ai /

�i for the thermodynamic equilibrium constant. Thus, r is the sum of

the number of independent reaction equilibria, the number of phases containing ions, and

the number of independent initial conditions. Several examples will be given in Sec. 13.1.4.

There is an infinite variety of possible choices of the independent variables (both exten-

sive and intensive) for the equilibrium system, but the total number of independent variables

is fixed at 2C s � r . Keeping intensive properties fixed, we can always vary how much of

each phase is present (e.g., its volume, mass, or amount) without destroying the equilib-

rium. Thus, at least P of the independent variables, one for each phase, must be extensive.

It follows that the maximum number of independent intensive variables is the difference

.2C s � r/ � P .

It may be that initial conditions establish relations among the amounts of phases, as

will be illustrated in example 2 on page 423. If present, these are relations among

extensive variables that are not counted in r . Each such independent relation decreases

the total number of independent variables without changing the number of independent

intensive variables calculated from .2C s � r/ � P .

Since the maximum number of independent intensive variables is the number of degrees

1Relations such as
P

i pi D p for a gas phase or
P

i xi D 1 for a phase in general have already been accounted

for in the derivation by the specification of p and the amount of each species.
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of freedom, our expression for F based on species is

F D 2C s � r � P (13.1.3)

13.1.3 Components approach to the phase rule

The derivation of the phase rule in this section uses the concept of components. The number

of components, C , is the minimum number of substances or mixtures of fixed composition

from which we could in principle prepare each individual phase of an equilibrium state of

the system, using methods that may be hypothetical. These methods include the addition or

removal of one or more of the substances or fixed-composition mixtures, and the conversion

of some of the substances into others by means of a reaction that is at equilibrium in the

actual system.

It is not always easy to decide on the number of components of an equilibrium system.

The number of components may be less than the number of substances present, on account

of the existence of reaction equilibria that produce some substances from others. When we

use a reaction to prepare a phase, nothing must remain unused. For instance, consider a

system consisting of solid phases of CaCO3 and CaO and a gas phase of CO2. Assume the

reaction CaCO3(s)!CaO.s/ C CO2.g/ is at equilibrium. We could prepare the CaCO3

phase from CaO and CO2 by the reverse of this reaction, but we can only prepare the CaO

and CO2 phases from the individual substances. We could not use CaCO3 to prepare either

the CaO phase or the CO2 phase, because CO2 or CaO would be left over. Thus this system

has three substances but only two components, namely CaO and CO2.

In deriving the phase rule by the components approach, it is convenient to consider

only intensive variables. Suppose we have a system of P phases in which each substance

present is a component (i.e., there are no reactions) and each of the C components is present

in each phase. If we make changes to the system while it remains in thermal and mechanical

equilibrium, but not necessarily in transfer equilibrium, we can independently vary the tem-

perature and pressure of the whole system, and for each phase we can independently vary

the mole fraction of all but one of the substances (the value of the omitted mole fraction

comes from the relation
P

i xi D 1). This is a total of 2CP.C � 1/ independent intensive

variables.

When there also exist transfer and reaction equilibria, not all of these variables are in-

dependent. Each substance in the system is either a component, or else can be formed from

components by a reaction that is in reaction equilibrium in the system. Transfer equilibria

establish P � 1 independent relations for each component (�
“
i D �’

i , �
”
i D �’

i , etc.) and

a total of C.P � 1/ relations for all components. Since these are relations among chemical

potentials, which are intensive properties, each relation reduces the number of independent

intensive variables by one. The resulting number of independent intensive variables is

F D Œ2C P.C � 1/� � C.P � 1/ D 2C C � P (13.1.4)

If the equilibrium system lacks a particular component in one phase, there is one fewer

mole fraction variable and one fewer relation for transfer equilibrium. These changes cancel

in the calculation of F , which is still equal to 2C C � P . If a phase contains a substance

that is formed from components by a reaction, there is an additional mole fraction variable

and also the additional relation
P

i�i�i D 0 for the reaction; again the changes cancel.
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We may need to remove a component from a phase to achieve the final composition.

Note that it is not necessary to consider additional relations for electroneutrality or

initial conditions; they are implicit in the definitions of the components. For instance,

since each component is a substance of zero electric charge, the electrical neutrality of

the phase is assured.

We conclude that, regardless of the kind of system, the expression for F based on

components is given by F D 2C C � P . By comparing this expression and F D 2C s �
r � P , we see that the number of components is related to the number of species by

C D s � r (13.1.5)

13.1.4 Examples

The five examples below illustrate various aspects of using the phase rule.

Example 1: liquid water

For a single phase of pure water, P equals 1. If we treat the water as the single species

H2O, s is 1 and r is 0. The phase rule then predicts two degrees of freedom:

F D 2C s � r � P

D 2C 1 � 0 � 1 D 2 (13.1.6)

Since F is the number of intensive variables that can be varied independently, we could for

instance vary T and p independently, or T and �, or any other pair of independent intensive

variables.

Next let us take into account the proton transfer equilibrium

2 H2O.l/ • H3OC.aq/C OH�.aq/

and consider the system to contain the three species H2O, H3OC, and OH�. Then for the

species approach to the phase rule, we have s D 3. We can write two independent relations:

1. for reaction equilibrium, �2�H2O C �H3OC C �OH� D 0;

2. for electroneutrality, mH3OC D mOH� .

Thus, we have two relations involving intensive variables only. Now s is 3, r is 2, P is 1,

and the number of degrees of freedom is given by

F D 2C s � r � P D 2 (13.1.7)

which is the same value of F as before.

If we consider water to contain additional cation species (e.g., H5O2
C), each such

species would add 1 to s and 1 to r , but F would remain equal to 2. Thus, no matter

how complicated are the equilibria that actually exist in liquid water, the number of degrees

of freedom remains 2.

Applying the components approach to water is simple. All species that may exist in

pure water are formed, in whatever proportions actually exist, from the single substance

H2O. Thus, there is only one component: C D 1. The component version of the phase

rule, F D 2C C � P , gives the same result as the species version: F D 2.
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Example 2: carbon, oxygen, and carbon oxides

Consider a system containing solid carbon (graphite) and a gaseous mixture of O2, CO, and

CO2. There are four species and two phases. If reaction equilibrium is absent, as might be

the case at low temperature in the absence of a catalyst, we have r D 0 and C D s� r D 4.

The four components are the four substances. The phase rule tells us the system has four

degrees of freedom. We could, for instance, arbitrarily vary T , p, yO2
, and yCO.

Now suppose we raise the temperature or introduce an appropriate catalyst to allow the

following reaction equilibria to exist:

1. 2 C.s/C O2.g/ • 2 CO.g/

2. C.s/C O2.g/ • CO2.g/

These equilibria introduce two new independent relations among chemical potentials and

among activities. We could also consider the equilibrium 2 CO.g/C O2.g/ • 2 CO2.g/,

but it does not contribute an additional independent relation because it depends on the other

two equilibria: the reaction equation is obtained by subtracting the reaction equation for

equilibrium 1 from twice the reaction equation for equilibrium 2. By the species approach,

we have s D 4, r D 2, and P D 2; the number of degrees of freedom from these values is

F D 2C s � r � P D 2 (13.1.8)

If we wish to calculate F by the components approach, we must decide on the mini-

mum number of substances we could use to prepare each phase separately. (This does not

refer to how we actually prepare the two-phase system, but to a hypothetical preparation of

each phase with any of the compositions that can actually exist in the equilibrium system.)

Assume equilibria 1 and 2 are present. We prepare the solid phase with carbon, and we

can prepare any possible equilibrium composition of the gas phase from carbon and O2 by

using the reactions of both equilibria. Thus, there are two components (C and O2) giving

the same result of two degrees of freedom.

What is the significance of there being two degrees of freedom when the reaction equi-

libria are present? There are two ways of viewing the situation:

1. We can arbitrarily vary the two intensive variables T and p. When we do, the mole

fractions of the three substances in the gas phase change in a way determined by

equilibria 1 and 2.

2. If we specify arbitrary values of T and p, each of the mole fractions has only one

possible value that will allow the two phases and four substances to be in equilibrium.

Now to introduce an additional complexity: Suppose we prepare the system by placing

a certain amount of O2 and twice this amount of carbon in an evacuated container, and wait

for the reactions to come to equilibrium. This method of preparation imposes an initial

condition on the system, and we must decide whether the number of degrees of freedom is

affected. Equating the total amount of carbon atoms to the total amount of oxygen atoms in

the equilibrated system gives the relation

nC C nCO C nCO2
D 2nO2

C nCO C 2nCO2
or nC D 2nO2

C nCO2
(13.1.9)

Either equation is a relation among extensive variables of the two phases. From them, we

are unable to obtain any relation among intensive variables of the phases. Therefore, this

particular initial condition does not change the value of r , and F remains equal to 2.
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Example 3: a solid salt and saturated aqueous solution

In this example, the equilibrium system consists of crystalline PbCl2 and an aqueous phase

containing the species H2O, Pb2C(aq), and Cl�(aq).

Applying the components approach to this system is straightforward. The solid phase

is prepared from PbCl2 and the aqueous phase could be prepared by dissolving solid PbCl2
in H2O. Thus, there are two components and two phases:

F D 2C C � P D 2 (13.1.10)

For the species approach, we note that there are four species (PbCl2, Pb2C, Cl�, and

H2O) and two independent relations among intensive variables:

1. equilibrium for the dissolution process, ��PbCl2
C �Pb2C C 2�Cl� D 0;

2. electroneutrality of the aqueous phase, 2mPb2C D mCl� .

We have s D 4, r D 2, and P D 2, giving the same result as the components approach:

F D 2C s � r � P D 2 (13.1.11)

Example 4: liquid water and water-saturated air

For simplicity, let “air” be a gaseous mixture of N2 and O2. The equilibrium system in this

example has two phases: liquid water saturated with the dissolved constituents of air, and

air saturated with gaseous H2O.

If there is no special relation among the total amounts of N2 and O2, there are three

components and the phase rule gives

F D 2C C � P D 3 (13.1.12)

Since there are three degrees of freedom, we could, for instance, specify arbitrary values2

of T , p, and yN2
; then the values of other intensive variables such as the mole fractions

yH2O and xN2
would have definite values.

Now suppose we impose an initial condition by preparing the system with water and

dry air of a fixed composition. The mole ratio of N2 and O2 in the aqueous solution is not

necessarily the same as in the equilibrated gas phase; consequently, the air does not behave

like a single substance. The number of components is still three: H2O, N2, and O2 are

all required to prepare each phase individually, just as when there was no initial condition,

giving F D 3 as before.3

We can reach the same conclusion with the species approach. The initial condition can

be expressed by an equation such as

.nl
N2
C n

g
N2

/

.nl
O2
C n

g
O2

/
D a (13.1.13)

2Arbitrary, that is, within the limits that would allow the two phases to coexist.
3The fact that the compositions of both phases depend on the relative amounts of the phases is illustrated in

Prob. 9.5.
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where a is a constant equal to the mole ratio of N2 and O2 in the dry air. This equation

cannot be changed to a relation between intensive variables such as xN2
and xO2

, so that r

is zero and there are still three degrees of freedom.

Finally, let us assume that we prepare the system with dry air of fixed composition, as

before, but consider the solubilities of N2 and O2 in water to be negligible. Then nl
N2

and

nl
O2

are zero and Eq. 13.1.13 becomes n
g
N2

=n
g
O2
D a, or yN2

D ayO2
, which is a relation

between intensive variables. In this case, r is 1 and the phase rule becomes

F D 2C s � r � P D 2 (13.1.14)

The reduction in the value of F from 3 to 2 is a consequence of our inability to detect any

dissolved N2 or O2. According to the components approach, we may prepare the liquid

phase with H2O and the gas phase with H2O and air of fixed composition that behaves as a

single substance; thus, there are only two components.

Example 5: equilibrium between two solid phases and a gas phase

Consider the following reaction equilibrium:

3 CuO.s/C 2 NH3.g/ • 3 Cu.s/C 3 H2O.g/C N2.g/

According to the species approach, there are five species, one relation (for reaction equilib-

rium), and three phases. The phase rule gives

F D 2C s � r � P D 3 (13.1.15)

It is more difficult to apply the components approach to this example. As components,

we might choose CuO and Cu (from which we could prepare the solid phases) and also NH3

and H2O. Then to obtain the N2 needed to prepare the gas phase, we could use CuO and

NH3 as reactants in the reaction 3 CuO C 2 NH3 ! 3 Cu C 3 H2O C N2 and remove the

products Cu and H2O. In the components approach, we are allowed to remove substances

from the system provided they are counted as components.

13.2 PHASE DIAGRAMS: BINARY SYSTEMS

As explained in Sec. 8.2, a phase diagram is a kind of two-dimensional map that shows

which phase or phases are stable under a given set of conditions. This section discusses

some common kinds of binary systems, and Sec. 13.3 will describe some interesting ternary

systems.

13.2.1 Generalities

A binary system has two components; C equals 2, and the number of degrees of freedom is

F D 4 � P . There must be at least one phase, so the maximum possible value of F is 3.

Since F cannot be negative, the equilibrium system can have no more than four phases.

We can independently vary the temperature, pressure, and composition of the system as

a whole. Instead of using these variables as the coordinates of a three-dimensional phase
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diagram, we usually draw a two-dimensional phase diagram that is either a temperature–

composition diagram at a fixed pressure or a pressure–composition diagram at a fixed tem-

perature. The position of the system point on one of these diagrams then corresponds to a

definite temperature, pressure, and overall composition. The composition variable usually

varies along the horizontal axis and can be the mole fraction, mass fraction, or mass percent

of one of the components, as will presently be illustrated by various examples.

The way in which we interpret a two-dimensional phase diagram to obtain the compo-

sitions of individual phases depends on the number of phases present in the system.

� If the system point falls within a one-phase area of the phase diagram, the com-

position variable is the composition of that single phase. There are three degrees

of freedom. On the phase diagram, the value of either T or p has been fixed, so

there are two other independent intensive variables. For example, on a temperature–

composition phase diagram, the pressure is fixed and the temperature and composi-

tion can be changed independently within the boundaries of the one-phase area of the

diagram.

� If the system point is in a two-phase area of the phase diagram, we draw a horizontal

tie line of constant temperature (on a temperature–composition phase diagram) or

constant pressure (on a pressure–composition phase diagram). The lever rule applies.

The position of the point at each end of the tie line, at the boundary of the two-phase

area, gives the value of the composition variable of one of the phases and also the

physical state of this phase: either the state of an adjacent one-phase area, or the

state of a phase of fixed composition when the boundary is a vertical line. Thus, a

boundary that separates a two-phase area for phases ’ and “ from a one-phase area

for phase ’ is a curve that describes the composition of phase ’ as a function of T or

p when it is in equilibrium with phase “. The curve is called a solidus, liquidus, or

vaporus depending on whether phase ’ is a solid, liquid, or gas.

� A binary system with three phases has only one degree of freedom and cannot be

represented by an area on a two-dimensional phase diagram. Instead, there is a hori-

zontal boundary line between areas, with a special point along the line at the junction

of several areas. The compositions of the three phases are given by the positions of

this point and the points at the two ends of the line. The position of the system point

on this line does not uniquely specify the relative amounts in the three phases.

The examples that follow show some of the simpler kinds of phase diagrams known for

binary systems.

13.2.2 Solid–liquid systems

Figure 13.1 on the next page is a temperature–composition phase diagram at a fixed pres-

sure. The composition variable zB is the mole fraction of component B in the system as a

whole. The phases shown are a binary liquid mixture of A and B, pure solid A, and pure

solid B.

The one-phase liquid area is bounded by two curves, which we can think of either as

freezing-point curves for the liquid or as solubility curves for the solids. These curves com-

prise the liquidus. As the mole fraction of either component in the liquid phase decreases

from unity, the freezing point decreases. The curves meet at point a, which is a eutectic

Thermodynamics and Chemistry, 2nd edition, version 7a © 2015 by Howard DeVoe. Latest version: www.chem.umd.edu/thermobook



CHAPTER 13 THE PHASE RULE AND PHASE DIAGRAMS

13.2 PHASE DIAGRAMS: BINARY SYSTEMS 427

�

�

�

�� �

�

�

a

b

c

de f

g

h

liquidA(s) +
liquid

liquid
+ B(s)

A(s) + B(s)

� ��� ��� ��� ��� ���

A �B B

	

	
�

f�A

	e

	
�

f�B

Figure 13.1 Temperature–composition phase diagram for a binary system exhibiting

a eutectic point.

point. At this point, both solid A and solid B can coexist in equilibrium with a binary liquid

mixture. The composition at this point is the eutectic composition, and the temperature here

(denoted Te) is the eutectic temperature. Te is the lowest temperature for the given pressure

at which the liquid phase is stable.4

Suppose we combine 0:60 mol A and 0:40 mol B (zB D 0:40) and adjust the temper-

ature so as to put the system point at b. This point is in the one-phase liquid area, so the

equilibrium system at this temperature has a single liquid phase. If we now place the system

in thermal contact with a cold reservoir, heat is transferred out of the system and the system

point moves down along the isopleth (path of constant overall composition) b–h. The cool-

ing rate depends on the temperature gradient at the system boundary and the system’s heat

capacity.

At point c on the isopleth, the system point reaches the boundary of the one-phase area

and is about to enter the two-phase area labeled A(s) + liquid. At this point in the cooling

process, the liquid is saturated with respect to solid A, and solid A is about to freeze out

from the liquid. There is an abrupt decrease (break) in the cooling rate at this point, because

the freezing process involves an extra enthalpy decrease.

At the still lower temperature at point d, the system point is within the two-phase solid–

liquid area. The tie line through this point is line e–f. The compositions of the two phases

are given by the values of zB at the ends of the tie line: xs
B D 0 for the solid and xl

B D 0:50

for the liquid. From the general lever rule (Eq. 8.2.8 on page 209), the ratio of the amounts

in these phases is
nl

ns
D zB � xs

B

xl
B � zB

D 0:40 � 0

0:50 � 0:40
D 4:0 (13.2.1)

Since the total amount is ns C nl D 1:00 mol, the amounts of the two phases must be

ns D 0:20 mol and nl D 0:80 mol.

4“Eutectic” comes from the Greek for easy melting.
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Figure 13.2 Temperature–composition phase diagrams with single eutectics.

(a) Two pure solids and a liquid mixture. a

(b) Two solid solutions and a liquid mixture.

aRef. [168], p. 98.

When the system point reaches the eutectic temperature at point g, cooling halts until

all of the liquid freezes. Solid B freezes out as well as solid A. During this eutectic halt,
there are at first three phases: liquid with the eutectic composition, solid A, and solid B.

As heat continues to be withdrawn from the system, the amount of liquid decreases and the

amounts of the solids increase until finally only 0:60 mol of solid A and 0:40 mol of solid B

are present. The temperature then begins to decrease again and the system point enters the

two-phase area for solid A and solid B; tie lines in this area extend from zBD0 to zBD1.

Temperature–composition phase diagrams such as this are often mapped out experimen-

tally by observing the cooling curve (temperature as a function of time) along isopleths of

various compositions. This procedure is thermal analysis. A break in the slope of a cooling

curve at a particular temperature indicates the system point has moved from a one-phase

liquid area to a two-phase area of liquid and solid. A temperature halt indicates the temper-

ature is either the freezing point of the liquid to form a solid of the same composition, or

else a eutectic temperature.

Figure 13.2 shows two temperature–composition phase diagrams with single eutectic

points. The left-hand diagram is for the binary system of chloroform and carbon tetrachlo-

ride, two liquids that form nearly ideal mixtures. The solid phases are pure crystals, as in

Fig. 13.1. The right-hand diagram is for the silver–copper system and involves solid phases

that are solid solutions (substitutional alloys of variable composition). The area labeled s’

is a solid solution that is mostly silver, and s“ is a solid solution that is mostly copper. Tie

lines in the two-phase areas do not end at a vertical line for a pure solid component as they

do in the system shown in the left-hand diagram. The three phases that can coexist at the

eutectic temperature of 1,052 K are the melt of the eutectic composition and the two solid

solutions.

Section 12.5.4 discussed the possibility of the appearance of a solid compound when a
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Figure 13.3 Temperature–composition phase diagram for the binary system of ˛-

naphthylamine (A) and phenol (B) at 1 bar (Ref. [128]).

binary liquid mixture is cooled. An example of this behavior is shown in Fig. 13.3, in which

the solid compound contains equal amounts of the two components ˛-naphthylamine and

phenol. The possible solid phases are pure A, pure B, and the solid compound AB. Only one

or two of these solids can be present simultaneously in an equilibrium state. The vertical line

in the figure at zB D 0:5 represents the solid compound. The temperature at the upper end

of this line is the melting point of the solid compound, 29 ıC. The solid melts congruently
to give a liquid of the same composition. A melting process with this behavior is called a

dystectic reaction. The cooling curve for liquid of this composition would display a halt at

the melting point.

The phase diagram in Fig. 13.3 has two eutectic points. It resembles two simple phase

diagrams like Fig. 13.1 placed side by side. There is one important difference: the slope of

the freezing-point curve (liquidus curve) is nonzero at the composition of a pure component,

but is zero at the composition of a solid compound that is completely dissociated in the

liquid (as derived theoretically on page 388). Thus, the curve in Fig. 13.3 has a relative

maximum at the composition of the solid compound (zB D 0:5) and is rounded there,

instead of having a cusp—like a Romanesque arch rather than a Gothic arch.

An example of a solid compound that does not melt congruently is shown in Fig. 13.4

on the next page. The solid hydrate NaCl�2H2O is 61.9% NaCl by mass. It decomposes at

0 ıC to form an aqueous solution of composition 26.3% NaCl by mass and a solid phase of

anhydrous NaCl. These three phases can coexist at equilibrium at 0 ıC. A phase transition

like this, in which a solid compound changes into a liquid and a different solid, is called

incongruent or peritectic melting, and the point on the phase diagram at this temperature at

the composition of the liquid is a peritectic point.
Figure 13.4 shows there are two other temperatures at which three phases can be present

simultaneously: �21 ıC, where the phases are ice, the solution at its eutectic point, and the

solid hydrate; and 109 ıC, where the phases are gaseous H2O, a solution of composition

28.3% NaCl by mass, and solid NaCl. Note that both segments of the right-hand boundary

of the one-phase solution area have positive slopes, meaning that the solubilities of the solid

Thermodynamics and Chemistry, 2nd edition, version 7a © 2015 by Howard DeVoe. Latest version: www.chem.umd.edu/thermobook



CHAPTER 13 THE PHASE RULE AND PHASE DIAGRAMS

13.2 PHASE DIAGRAMS: BINARY SYSTEMS 430

���

���

�

��

��

��

��

���

���

� �� �� �� �� �� �� 	� �� 
� ���

H�O mass percent NaCl NaCl

��
Æ

C

H�O(g) � NaCl(s)

H�O(g)
� sln

sln sln � NaCl(s)

H�O(s)
� sln

sln � NaCl � �H�O(s)

H�O(s) � NaCl � �H�O(s)

NaCl � �H�O(s)
� NaCl(s)

peritectic
point

Figure 13.4 Temperature–composition phase diagram for the binary system of H2O

and NaCl at 1 bar. (Data from Refs. [37] and [167].)

hydrate and the anhydrous salt both increase with increasing temperature.

13.2.3 Partially-miscible liquids

When two liquids that are partially miscible are combined in certain proportions, phase

separation occurs (Sec. 11.1.6). Two liquid phases in equilibrium with one another are

called conjugate phases. Obviously the two phases must have different compositions or

they would be identical; the difference is called a miscibility gap. A binary system with

two phases has two degrees of freedom, so that at a given temperature and pressure each

conjugate phase has a fixed composition.

The typical dependence of a miscibility gap on temperature is shown in Fig. 13.5 on

the next page. The miscibility gap (the difference in compositions at the left and right

boundaries of the two-phase area) decreases as the temperature increases until at the upper
consolute temperature, also called the upper critical solution temperature, the gap vanishes.

The point at the maximum of the boundary curve of the two-phase area, where the tempera-

ture is the upper consolute temperature, is the consolute point or critical point. At this point,

the two liquid phases become identical, just as the liquid and gas phases become identical

at the critical point of a pure substance. Critical opalescence (page 205) is observed in the

vicinity of this point, caused by large local composition fluctuations. At temperatures at

and above the critical point, the system is a single binary liquid mixture.

Suppose we combine 6:0 mol of component A (methyl acetate) and 4:0 mol of compo-

nent B (carbon disulfide) in a cylindrical vessel and adjust the temperature to 200 K. The

Thermodynamics and Chemistry, 2nd edition, version 7a © 2015 by Howard DeVoe. Latest version: www.chem.umd.edu/thermobook



CHAPTER 13 THE PHASE RULE AND PHASE DIAGRAMS

13.2 PHASE DIAGRAMS: BINARY SYSTEMS 431

��

�� �

�

ab c

d���

���

���

���

���

���

���

���

� ��� ��	 ��
 ��� ���

C�H�O� �B CS�

�


K

l� l�

Figure 13.5 Temperature–composition phase diagram for the binary system of

methyl acetate (A) and carbon disulfide (B) at 1 bar. a All phases are liquids. The

open circle indicates the critical point.

aData from Ref. [54].

overall mole fraction of B is zB D 0:40. The system point is at point a in the two-phase

region. From the positions of points b and c at the ends of the tie line through point a,

we find the two liquid layers have compositions x’
B D 0:20 and x

“
B D 0:92. Since carbon

disulfide is the more dense of the two pure liquids, the bottom layer is phase “, the layer

that is richer in carbon disulfide. According to the lever rule, the ratio of the amounts in the

two phases is given by

n“

n’
D zB � x’

B

x
“
B � zB

D 0:40 � 0:20

0:92 � 0:40
D 0:38 (13.2.2)

Combining this value with n’ C n“ D 10:0 mol gives us n’ D 7:2 mol and n“ D 2:8 mol.

If we gradually add more carbon disulfide to the vessel while gently stirring and keeping

the temperature constant, the system point moves to the right along the tie line. Since the

ends of this tie line have fixed positions, neither phase changes its composition, but the

amount of phase “ increases at the expense of phase ’. The liquid–liquid interface moves

up in the vessel toward the top of the liquid column until, at overall composition zB D 0:92

(point c), there is only one liquid phase.

Now suppose the system point is back at point a and we raise the temperature while

keeping the overall composition constant at zB D 0:40. The system point moves up the

isopleth a–d. The phase diagram shows that the ratio .zB�x’
B/=.x

“
B� zB/ decreases during

this change. As a result, the amount of phase ’ increases, the amount of phase “ decreases,

and the liquid–liquid interface moves down toward the bottom of the vessel until at 217 K

(point d) there again is only one liquid phase.

13.2.4 Liquid–gas systems with ideal liquid mixtures

Toluene and benzene form liquid mixtures that are practically ideal and closely obey Raoult’s

law for partial pressure. For the binary system of these components, we can use the vapor
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Figure 13.6 Phase diagrams for the binary system of toluene (A) and benzene (B).

The curves are calculated from Eqs. 13.2.6 and 13.2.7 and the saturation vapor pres-

sures of the pure liquids.

(a) Pressure–composition diagram at T D 340 K.

(b) Temperature–composition diagram at p D 1 bar.

pressures of the pure liquids to generate the liquidus and vaporus curves of the pressure–

composition and temperature–composition phase diagram. The results are shown in Fig.

13.6. The composition variable zA is the overall mole fraction of component A (toluene).

The equations needed to generate the curves can be derived as follows. Consider a

binary liquid mixture of components A and B and mole fraction composition xA that obeys

Raoult’s law for partial pressure (Eq. 9.4.2):

pA D xAp�A pB D .1 � xA/p�B (13.2.3)

Strictly speaking, Raoult’s law applies to a liquid–gas system maintained at a constant pres-

sure by means of a third gaseous component, and p�A and p�B are the vapor pressures of

the pure liquid components at this pressure and the temperature of the system. However,

when a liquid phase is equilibrated with a gas phase, the partial pressure of a constituent of

the liquid is practically independent of the total pressure (Sec. 12.8.1), so that it is a good

approximation to apply the equations to a binary liquid–gas system and treat p�A and p�B as

functions only of T .

When the binary system contains a liquid phase and a gas phase in equilibrium, the

pressure is the sum of pA and pB, which from Eq. 13.2.3 is given by

p D xAp�A C .1 � xA/p�B
D p�B C .p�A � p�B/xA (13.2.4)

(CD2, ideal liquid mixture)

where xA is the mole fraction of A in the liquid phase. Equation 13.2.4 shows that in the

two-phase system, p has a value between p�A and p�B, and that if T is constant, p is a linear
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function of xA. The mole fraction composition of the gas in the two-phase system is given

by

yA D
pA

p
D xAp�A

p�B C .p�A � p�B/xA

(13.2.5)

A binary two-phase system has two degrees of freedom. At a given T and p, each phase

must have a fixed composition. We can calculate the liquid composition by rearranging Eq.

13.2.4:

xA D
p � p�B
p�A � p�B

(13.2.6)

(CD2, ideal liquid mixture)

The gas composition is then given by

yA D
pA

p
D xAp�A

p

D
�

p � p�B
p�A � p�B

�
p�A
p

(13.2.7)

(CD2, ideal liquid mixture)

If we know p�A and p�B as functions of T , we can use Eqs. 13.2.6 and 13.2.7 to calculate the

compositions for any combination of T and p at which the liquid and gas phases can coexist,

and thus construct a pressure–composition or temperature–composition phase diagram.

In Fig. 13.6(a), the liquidus curve shows the relation between p and xA for equilibrated

liquid and gas phases at constant T , and the vaporus curve shows the relation between p

and yA under these conditions. We see that p is a linear function of xA but not of yA.

In a similar fashion, the liquidus curve in Fig. 13.6(b) shows the relation between T and

xA, and the vaporus curve shows the relation between T and yA, for equilibrated liquid and

gas phases at constant p. Neither curve is linear.

A liquidus curve is also called a bubble-point curve or a boiling-point curve. Other

names for a vaporus curve are dew-point curve and condensation curve. These curves are

actually cross-sections of liquidus and vaporus surfaces in a three-dimensional T –p–zA

phase diagram, as shown in Fig. 13.7 on the next page. In this figure, the liquidus surface is

in view at the front and the vaporus surface is hidden behind it.

13.2.5 Liquid–gas systems with nonideal liquid mixtures

Most binary liquid mixtures do not behave ideally. The most common situation is positive
deviations from Raoult’s law.5 Some mixtures, however, have specific A–B interactions,

such as solvation or molecular association, that prevent random mixing of the molecules

of A and B, and the result is then negative deviations from Raoult’s law. If the deviations

from Raoult’s law, either positive or negative, are large enough, the constant-temperature

liquidus curve exhibits a maximum or minimum and azeotropic behavior results.

Figure 13.8 on page 435 shows the azeotropic behavior of the binary methanol-benzene

system at constant temperature. In Fig. 13.8(a), the experimental partial pressures in a

5In the molecular model of Sec. 11.1.5, positive deviations correspond to a less negative value of kAB than the

average of kAA and kBB.
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Figure 13.7 Liquidus and vaporus surfaces for the binary system of toluene (A) and

benzene. Cross-sections through the two-phase region are drawn at constant temper-

atures of 340 K and 370 K and at constant pressures of 1 bar and 2 bar. Two of the

cross-sections intersect at a tie line at T D 370 K and p D 1 bar, and the other cross-

sections are hatched in the direction of the tie lines.

gas phase equilibrated with the nonideal liquid mixture are plotted as a function of the

liquid composition. The partial pressures of both components exhibit positive deviations

from Raoult’s law,6 and the total pressure (equal to the sum of the partial pressures) has a

maximum value greater than the vapor pressure of either pure component. The curve of p

versus xA becomes the liquidus curve of the pressure–composition phase diagram shown in

Fig. 13.8(b). Points on the vaporus curve are calculated from p D pA=yA.

In practice, the data needed to generate the liquidus and vaporus curves of a nonideal

binary system are usually obtained by allowing liquid mixtures of various composi-

tions to boil in an equilibrium still at a fixed temperature or pressure. When the liquid

and gas phases have become equilibrated, samples of each are withdrawn for analy-

sis. The partial pressures shown in Fig. 13.8(a) were calculated from the experimental

gas-phase compositions with the relations pA D yAp and pB D p � pA.

If the constant-temperature liquidus curve has a maximum pressure at a liquid composi-

tion not corresponding to one of the pure components, which is the case for the methanol–

6This behavior is consistent with the statement in Sec. 12.8.2 that if one constituent of a binary liquid mixture

exhibits positive deviations from Raoult’s law, with only one inflection point in the curve of fugacity versus

mole fraction, the other constituent also has positive deviations from Raoult’s law.
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Figure 13.8 Binary system of methanol (A) and benzene at 45 ıC. a

(a) Partial pressures and total pressure in the gas phase equilibrated with liquid mix-

tures. The dashed lines indicate Raoult’s law behavior.

(b) Pressure–composition phase diagram at 45 ıC. Open circle: azeotropic point at

zA D 0:59 and p D 60:5 kPa.

aRef. [157].

benzene system, then the liquid and gas phases are mixtures of identical compositions at

this pressure. This behavior was deduced on page 405 at the end of Sec. 12.8.3. On the

pressure–composition phase diagram, the liquidus and vaporus curves both have maxima

at this pressure, and the two curves coincide at an azeotropic point. A binary system with

negative deviations from Raoult’s law can have an isothermal liquidus curve with a mini-
mum pressure at a particular mixture composition, in which case the liquidus and vaporus

curves coincide at an azeotropic point at this minimum. The general phenomenon in which

equilibrated liquid and gas mixtures have identical compositions is called azeotropy, and

the liquid with this composition is an azeotropic mixture or azeotrope (Greek: boils un-
changed). An azeotropic mixture vaporizes as if it were a pure substance, undergoing an

equilibrium phase transition to a gas of the same composition.

If the liquidus and vaporus curves exhibit a maximum on a pressure–composition phase

diagram, then they exhibit a minimum on a temperature–composition phase diagram. This

relation is explained for the methanol–benzene system by the three-dimensional liquidus

and vaporus surfaces drawn in Fig. 13.9 on the next page. In this diagram, the vaporus

surface is hidden behind the liquidus surface. The hatched cross-section at the front of the

figure is the same as the pressure–composition diagram of Fig. 13.8(b), and the hatched

cross-section at the top of the figure is a temperature–composition phase diagram in which

the system exhibits a minimum-boiling azeotrope.

A binary system containing an azeotropic mixture in equilibrium with its vapor has two

species, two phases, and one relation among intensive variables: xA D yA. The number

of degrees of freedom is then F D 2 C s � r � P D 2 C 2 � 1 � 2 D 1; the system is
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Figure 13.9 Liquidus and vaporus surfaces for the binary system of methanol (A)

and benzene. a Cross-sections are hatched in the direction of the tie lines. The dashed

curve is the azeotrope vapor-pressure curve.

aRef. [157].

univariant. At a given temperature, the azeotrope can exist at only one pressure and have

only one composition. As T changes, so do p and zA along an azeotrope vapor-pressure
curve as illustrated by the dashed curve in Fig. 13.9.

Figure 13.10 on the next page summarizes the general appearance of some relatively

simple temperature–composition phase diagrams of binary systems. If the system does not

form an azeotrope (zeotropic behavior), the equilibrated gas phase is richer in one compo-

nent than the liquid phase at all liquid compositions, and the liquid mixture can be separated

into its two components by fractional distillation. The gas in equilibrium with an azeotropic

mixture, however, is not enriched in either component. Fractional distillation of a system

with an azeotrope leads to separation into one pure component and the azeotropic mixture.

More complicated behavior is shown in the phase diagrams of Fig. 13.11. These are

binary systems with partially-miscible liquids in which the boiling point is reached before

an upper consolute temperature can be observed.

13.2.6 Solid–gas systems

As an example of a two-component system with equilibrated solid and gas phases, con-

sider the components CuSO4 and H2O, denoted A and B respectively. In the pressure–

composition phase diagram shown in Fig. 13.12 on page 438, the composition variable zB

is as usual the mole fraction of component B in the system as a whole.

The anhydrous salt and its hydrates (solid compounds) form the series of solids CuSO4,

CuSO4 �H2O, CuSO4 �3H2O, and CuSO4 �5H2O. In the phase diagram these formulas are
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Figure 13.10 Temperature–composition phase diagrams of binary systems exhibit-

ing (a) no azeotropy, (b) a minimum-boiling azeotrope, and (c) a maximum-boiling

azeotrope. Only the one-phase areas are labeled; two-phase areas are hatched in the

direction of the tie lines.
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Figure 13.11 Temperature–composition phase diagrams of binary systems with

partially-miscible liquids exhibiting (a) the ability to be separated into pure compo-

nents by fractional distillation, (b) a minimum-boiling azeotrope, and (c) boiling at a

lower temperature than the boiling point of either pure component. Only the one-phase

areas are labeled; two-phase areas are hatched in the direction of the tie lines.

abbreviated A, AB, AB3, and AB5. The following dissociation equilibria (dehydration

equilibria) are possible:

CuSO4 �H2O.s/ • CuSO4.s/C H2O.g/

1
2
CuSO4 �3H2O.s/ • 1

2
CuSO4 �H2O.s/C H2O.g/

1
2
CuSO4 �5H2O.s/ • 1

2
CuSO4 �3H2O.s/C H2O.g/

The equilibria are written above with coefficients that make the coefficient of H2O(g) unity.

When one of these equilibria is established in the system, there are two components and

three phases; the phase rule then tells us the system is univariant and the pressure has only

one possible value at a given temperature. This pressure is called the dissociation pressure
of the higher hydrate.
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Figure 13.12 Pressure–composition phase diagram for the binary system of CuSO4

(A) and H2O (B) at 25 ıC. a

aRef. [107]; Ref. [169], p. 263.

The dissociation pressures of the three hydrates are indicated by horizontal lines in Fig.

13.12. For instance, the dissociation pressure of CuSO4 �5H2O is 1:05� 10�2 bar. At the

pressure of each horizontal line, the equilibrium system can have one, two, or three phases,

with compositions given by the intersections of the line with vertical lines. A fourth three-

phase equilibrium is shown at p D 3:09� 10�2 bar; this is the equilibrium between solid

CuSO4 �5H2O, the saturated aqueous solution of this hydrate, and water vapor.

Consider the thermodynamic equilibrium constant of one of the dissociation reactions.

At the low pressures shown in the phase diagram, the activities of the solids are practically

unity and the fugacity of the water vapor is practically the same as the pressure, so the equi-

librium constant is almost exactly equal to pd=pı, where pd is the dissociation pressure of

the higher hydrate in the reaction. Thus, a hydrate cannot exist in equilibrium with water va-

por at a pressure below the dissociation pressure of the hydrate because dissociation would

be spontaneous under these conditions. Conversely, the salt formed by the dissociation of

a hydrate cannot exist in equilibrium with water vapor at a pressure above the dissociation

pressure because hydration would be spontaneous.

If the system contains dry air as an additional gaseous component and one of the dis-

sociation equilibria is established, the partial pressure pH2O of H2O is equal (approx-

imately) to the dissociation pressure pd of the higher hydrate. The prior statements

regarding dissociation and hydration now depend on the value of pH2O. If a hydrate

is placed in air in which pH2O is less than pd, dehydration is spontaneous; this phe-

nomenon is called efflorescence (Latin: blossoming). If pH2O is greater than the vapor

pressure of the saturated solution of the highest hydrate that can form in the system,

Thermodynamics and Chemistry, 2nd edition, version 7a © 2015 by Howard DeVoe. Latest version: www.chem.umd.edu/thermobook



CHAPTER 13 THE PHASE RULE AND PHASE DIAGRAMS

13.2 PHASE DIAGRAMS: BINARY SYSTEMS 439

���

���

���

���

���

�����

��
K

�

�

a

b

�

��

	�

��

��

��


�

��

��

�

�

�

ethane
�A

heptane

�
�

ba
r

��

��

��

��

��

��

Figure 13.13 Pressure–temperature–composition behavior in the binary heptane–

ethane system. a The open circles are critical points; the dashed curve is the critical

curve. The dashed line a–b illustrates retrograde condensation at 450 K.

aRef. [86].

the anhydrous salt and any of its hydrates will spontaneously absorb water and form

the saturated solution; this is deliquescence (Latin: becoming fluid).

If the two-component equilibrium system contains only two phases, it is bivariant cor-

responding to one of the areas in Fig. 13.12. Here both the temperature and the pressure can

be varied. In the case of areas labeled with two solid phases, the pressure has to be applied

to the solids by a fluid (other than H2O) that is not considered part of the system.

13.2.7 Systems at high pressure

Binary phase diagrams begin to look different when the pressure is greater than the critical

pressure of either of the pure components. Various types of behavior have been observed

in this region. One common type, that found in the binary system of heptane and ethane,

is shown in Fig. 13.13. This figure shows sections of a three-dimensional phase diagram

at five temperatures. Each section is a pressure–composition phase diagram at constant T .

The two-phase areas are hatched in the direction of the tie lines. At the left end of each

tie line (at low zA) is a vaporus curve, and at the right end is a liquidus curve. The vapor

pressure curve of pure ethane (zAD0) ends at the critical point of ethane at 305:4 K; between

this point and the critical point of heptane at 540:5 K, there is a continuous critical curve,
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Figure 13.14 Pressure–temperature–composition behavior in the binary xenon–

helium system. a The open circles are critical points; the dashed curve is the critical

curve.

aRef. [42].

which is the locus of critical points at which gas and liquid mixtures become identical in

composition and density.

Consider what happens when the system point is at point a in Fig. 13.13 and the pressure

is then increased by isothermal compression along line a–b. The system point moves from

the area for a gas phase into the two-phase gas–liquid area and then out into the gas-phase

area again. This curious phenomenon, condensation followed by vaporization, is called

retrograde condensation.

Under some conditions, an isobaric increase of T can result in vaporization followed by

condensation; this is retrograde vaporization.

A different type of high-pressure behavior, that found in the xenon–helium system, is

shown in Fig. 13.14. Here, the critical curve begins at the critical point of the less volatile

component (xenon) and continues to higher temperatures and pressures than the critical

temperature and pressure of either pure component. The two-phase region at pressures

above this critical curve is sometimes said to represent gas–gas equilibrium, or gas–gas
immiscibility, because we would not usually consider a liquid to exist beyond the critical

points of the pure components. Of course, the coexisting phases in this two-phase region

are not gases in the ordinary sense of being tenuous fluids, but are instead high-pressure

fluids of liquid-like densities. If we want to call both phases gases, then we have to say

that pure gaseous substances at high pressure do not necessarily mix spontaneously in all

proportions as they do at ordinary pressures.
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Figure 13.15 Representing the composition of a ternary system by a point in an

equilateral triangle.

If the pressure of a system is increased isothermally, eventually solid phases will appear;

these are not shown in Figs. 13.13 and Fig. 13.14.

13.3 PHASE DIAGRAMS: TERNARY SYSTEMS

A ternary system is one with three components. We can independently vary the temperature,

the pressure, and two independent composition variables for the system as a whole. A two-

dimensional phase diagram for a ternary system is usually drawn for conditions of constant

T and p.

Although we could draw a two-dimensional phase diagram with Cartesian coordinates

to express the mole fractions of two of the components, there are advantages in using in-

stead the triangular coordinates shown in Fig. 13.15. Each vertex of the equilateral triangle

represents one of the pure components A, B, or C. A point on the side of the triangle oppo-

site a vertex represents a binary system of the other two components, and a point within the

triangle represents a ternary system with all three components.

To determine the mole fraction zA of component A in the system as a whole represented

by a point within the triangle, we measure the distance to the point from the side of the

triangle that is opposite the vertex for pure A, then express this distance as a fraction of the

height of the triangle. We follow the same procedure to determine zB and zC. The concept

is shown in Fig. 13.15(a).

As an aid for the conversion between the position of a point and the overall composition,

we can draw equally-spaced lines within the triangle parallel to the sides as shown in Fig.

13.15(b). One of these lines, being at a constant distance from one side of the triangle,

represents a constant mole fraction of one component. In the figure, the lines divide the

distance from each side to the opposite vertex into ten equal parts; thus, adjacent parallel

lines represent a difference of 0:1 in the mole fraction of a component, starting with 0 at

the side of the triangle and ending with 1 at the vertex. Using the lines, we see that the

filled circle in the figure represents the overall composition zA D 0:20, zB D 0:30, and
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Figure 13.16 Proof that the sum of the lengths a, b, and c is equal to the height h of

the large equilateral triangle ABC. ADE and FDP are two smaller equilateral triangles.

The height of triangle ADE is equal to h�a. The height of triangle FDP is equal to the

height of triangle ADE minus length b, and is also equal to length c: h � a � b D c.

Therefore, aC b C c D h.

zC D 0:50.

The sum of zA, zB, and zC must be 1. The method of representing composition with a

point in an equilateral triangle works because the sum of the lines drawn from the point to

the three sides, perpendicular to the sides, equals the height of the triangle. The proof is

shown in Fig. 13.16.

Two useful properties of this way of representing a ternary composition are as follows:

1. Points on a line parallel to a side of the triangle represent systems in which one of the

mole fractions remains constant.

2. Points on a line passing through a vertex represent systems in which the ratio of two

of the mole fractions remains constant.

13.3.1 Three liquids

Figure 13.17 on the next page is the ternary phase diagram of a system of ethanol, benzene,

and water at a temperature and pressure at which the phases are liquids. When the system

point is in the area labeled PD1, there is a single liquid phase whose composition is de-

scribed by the position of the point. The one-phase area extends to the side of the triangle

representing binary mixtures of ethanol and benzene, and to the side representing binary

mixtures of ethanol and water. In other words, ethanol and benzene mix in all proportions,

and so also do ethanol and water.

When the overall composition is such that the system point falls in the area labeled

PD2, two liquid phases are present. The compositions of these phases are given by the

positions of the ends of a tie line through the system point. Four representative tie lines

are included in the diagram, and these must be determined experimentally. The relative

amounts of the two phases can be determined from the lever rule.7 In the limit of zero mole

7The lever rule works, according to the general derivation in Sec. 8.2.4, because the ratio nA=n, which is equal

to zA, varies linearly with the position of the system point along a tie line on the triangular phase diagram.
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Figure 13.17 Ternary phase diagram for ethanol, benzene, and water at 30 ıC and

1 bar. a The dashed lines are tie lines; the open circle indicates the plait point.

aRef. [19].

fraction of ethanol, the tie line falls along the horizontal base of the triangle and displays a

miscibility gap for the binary system of benzene and water. (The conjugate phases are very

nearly pure benzene and pure water).

The plait point shown as an open circle in the figure is also called a critical solution
point. As the system point approaches the plait point from within the two-phase area, the

length of the tie line through the system point approaches zero, the miscibility gap disap-

pears, and the compositions of the two conjugate liquid phases become identical.

Suppose we have the binary system of benzene and water represented by point a. Two

liquid phases are present: one is wet benzene and the other is water containing a very small

mole fraction of benzene. If we gradually stir ethanol into this system, the system point

moves along the dotted line from point a toward the vertex for pure ethanol, but can never

quite reach the vertex. At point b, there are still two phases, and we can consider the ethanol

to have distributed itself between two partially-miscible solvents, benzene and water (Sec.

12.6.3). From the position of point b relative to the ends of the tie line passing through

point b, we see that the mole fraction of ethanol is greater in the water-rich phase. As we

continue to add ethanol, the amount of the water-rich phase increases and the amount of the

benzene-rich phase decreases, until at point c the benzene-rich phase completely disappears.

The added ethanol has increased the mutual solubilities of benzene and water and resulted

in a single liquid phase.

13.3.2 Two solids and a solvent

The phase diagram in Fig. 13.18 on the next page is for a ternary system of water and two

salts with an ion in common. There is a one-phase area for solution, labeled sln; a pair

of two-phase areas in which the phases are a single solid salt and the saturated solution;

and a triangular three-phase area. The upper vertex of the three-phase area, the eutonic
point, represents the composition of solution saturated with respect to both salts. Some

representative tie lines are drawn in the two-phase areas.
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sln + NaCl(s) + KCl(s)

H2O

NaCl KCl

Figure 13.18 Ternary phase diagram for NaCl, KCl, and water at 25 ıC and 1 bar. a

The dashed lines are tie lines in the two-phase areas.

aData from Ref. [168], p. 314.

A system of three components and three phases has two degrees of freedom; at fixed

values of T and p, each phase must have a fixed composition. The fixed compositions

of the phases that are present when the system point falls in the three-phase area are the

compositions at the three vertices of the inner triangle: solid NaCl, solid KCl, and solution

of the eutonic composition xNaCl D 0:20 and xKCl D 0:11.

From the position of the curved boundary that separates the one-phase solution area

from the two-phase area for solution and solid KCl, we can see that adding NaCl to the

saturated solution of KCl decreases the mole fraction of KCl in the saturated solution. Al-

though it is not obvious in the phase diagram, adding KCl to a saturated solution of NaCl

decreases the mole fraction of NaCl. These decreases in solubility when a common ion is

added are examples of the common ion effect mentioned in Sec. 12.5.5.
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PROBLEMS

An underlined problem number or problem-part letter indicates that the numerical answer appears

in Appendix I.

13.1 Consider a single-phase system that is a gaseous mixture of N2, H2, and NH3. For each

of the following cases, find the number of degrees of freedom and give an example of the

independent intensive variables that could be used to specify the equilibrium state, apart from

the total amount of gas.

(a) There is no reaction.

(b) The reaction N2.g/C 3 H2.g/ ! 2 NH3.g/ is at equilibrium.

(c) The reaction is at equilibrium and the system is prepared from NH3 only.

13.2 How many components has a mixture of water and deuterium oxide in which the equilibrium

H2OC D2O • 2 HDO exists?

13.3 Consider a system containing only NH4Cl(s), NH3(g), and HCl(g). Assume that the equilib-

rium NH4Cl.s/ • NH3.g/C HCl.g/ exists.

(a) Suppose you prepare the system by placing solid NH4Cl in an evacuated flask and heating

to 400 K. Use the phase rule to decide whether you can vary the pressure while both

phases remain in equilibrium at 400 K.

(b) According to the phase rule, if the system is not prepared as described in part (a) could

you vary the pressure while both phases remain in equilibrium at 400 K? Explain.

(c) Rationalize your conclusions for these two cases on the basis of the thermodynamic equi-

librium constant. Assume that the gas phase is an ideal gas mixture and use the approxi-

mate expression K D pNH3
pHCl=.pı/2.

13.4 Consider the lime-kiln process CaCO3.s/ ! CaO.s/ C CO2.g/. Find the number of inten-

sive variables that can be varied independently in the equilibrium system under the following

conditions:

(a) The system is prepared by placing calcium carbonate, calcium oxide, and carbon dioxide

in a container.

(b) The system is prepared from calcium carbonate only.

(c) The temperature is fixed at 1000 K.

13.5 What are the values of C and F in systems consisting of solid AgCl in equilibrium with an

aqueous phase containing H2O, AgC(aq), Cl�(aq), NaC(aq), and NO�3 (aq) prepared in the

following ways? Give examples of intensive variables that could be varied independently.

(a) The system is prepared by equilibrating excess solid AgCl with an aqueous solution of

NaNO3.

(b) The system is prepared by mixing aqueous solutions of AgNO3 and NaCl in arbitrary

proportions; some solid AgCl forms by precipitation.

13.6 How many degrees of freedom has a system consisting of solid NaCl in equilibrium with

an aqueous phase containing H2O, NaC(aq), Cl�(aq), HC(aq), and OH�(aq)? Would it be

possible to independently vary T , p, and mOH�? If so, explain how you could do this.

13.7 Consult the phase diagram shown in Fig. 13.4 on page 430. Suppose the system contains 36:0 g

(2:00 mol) H2O and 58:4 g (1:00 mol) NaCl at 25 ıC and 1 bar.
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(a) Describe the phases present in the equilibrium system and their masses.

(b) Describe the changes that occur at constant pressure if the system is placed in thermal

contact with a heat reservoir at �30 ıC.

(c) Describe the changes that occur if the temperature is raised from 25 ıC to 120 ıC at con-

stant pressure.

(d) Describe the system after 200 g H2O is added at 25 ıC.

Table 13.1 Aqueous solubilities of

sodium sulfate decahydrate and anhy-

drous sodium sulfate a

Na2SO4 �10H2O Na2SO4

t=ıC xB t=ıC xB

10 0:011 40 0:058

15 0:016 50 0:056

20 0:024

25 0:034

30 0:048

aRef. [55], p. 179–180.

13.8 Use the following information to draw a temperature–composition phase diagram for the binary

system of H2O (A) and Na2SO4 (B) at p D 1 bar, confining t to the range �20 to 50 ıC and

zB to the range 0–0:2. The solid decahydrate, Na2SO4 �10H2O, is stable below 32:4 ıC. The

anhydrous salt, Na2SO4, is stable above this temperature. There is a peritectic point for these

two solids and the solution at xB D 0:059 and t D 32:4 ıC. There is a eutectic point for

ice, Na2SO4 �10H2O, and the solution at xB D 0:006 and t D �1:3 ıC. Table 13.1 gives the

temperature dependence of the solubilities of the ionic solids.

13.9 Iron(III) chloride forms various solid hydrates, all of which melt congruently. Table 13.2 on

the next page lists the temperatures t of aqueous solutions of various compositions that are

saturated with respect to a solid phase.

(a) Use these data to construct a t–zB phase diagram for the binary system of FeCl3 (A) and

H2O (B). Identify the formula and melting point of each hydrate. Hint: derive a formula

for the mole ratio nB=nA as a function of xA in a binary mixture.

(b) For the following conditions, determine the phase or phases present at equilibrium and

the composition of each.

1. t D �70:0ıC and zA D 0:100

2. t D 50:0ıC and zA D 0:275

13.10 Figure 13.19 on the next page is a temperature–composition phase diagram for the binary

system of water (A) and phenol (B) at 1 bar. These liquids are partially miscible below 67 ıC.

Phenol is more dense than water, so the layer with the higher mole fraction of phenol is the

bottom layer. Suppose you place 4:0 mol of H2O and 1:0 mol of phenol in a beaker at 30 ıC
and gently stir to allow the layers to equilibrate.

(a) What are the compositions of the equilibrated top and bottom layers?

(b) Find the amount of each component in the bottom layer.
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Table 13.2 Data for Problem 13.9. Temperatures of

saturated solutions of aqueous iron(III) chloride at p D
1 bar (A = FeCl3, B = H2O) a

xA t=ıC xA t=ıC xA t=ıC

0.000 0.0 0.119 35.0 0.286 56.0

0.020 �10:0 0.143 37.0 0.289 55.0

0.032 �20:5 0.157 36.0 0.293 60.0

0.037 �27:5 0.173 33.0 0.301 69.0

0.045 �40:0 0.183 30.0 0.318 72.5

0.052 �55:0 0.195 27.4 0.333 73.5

0.053 �41:0 0.213 32.0 0.343 72.5

0.056 �27:0 0.222 32.5 0.358 70.0

0.076 0.0 0.232 30.0 0.369 66.0

0.083 10.0 0.238 35.0 0.369 80.0

0.093 20.0 0.259 50.0 0.373 100.0

0.106 30.0 0.277 55.0

aData from Ref. [55], page 193.
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Figure 13.19 Temperature–composition phase diagram for the binary system of wa-

ter (A) and phenol (B) at 1 bar. a Only liquid phases are present.

aRef. [55], p. 95.

(c) As you gradually stir more phenol into the beaker, maintaining the temperature at 30 ıC,

what changes occur in the volumes and compositions of the two layers? Assuming that

one layer eventually disappears, what additional amount of phenol is needed to cause this

to happen?

13.11 The standard boiling point of propane is �41:8 ıC and that of n-butane is �0:2 ıC. Table 13.3

on the next page lists vapor pressure data for the pure liquids. Assume that the liquid mixtures

obey Raoult’s law.

(a) Calculate the compositions, xA, of the liquid mixtures with boiling points of �10:0 ıC,

�20:0 ıC, and �30:0 ıC at a pressure of 1 bar.

(b) Calculate the compositions, yA, of the equilibrium vapor at these three temperatures.
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Table 13.3 Saturation vapor pressures

of propane (A) and n-butane (B)

t=ıC p�A=bar p�B=bar

�10:0 3:360 0:678

�20:0 2:380 0:441

�30:0 1:633 0:275

(c) Plot the temperature–composition phase diagram at p D 1 bar using these data, and label

the areas appropriately.

(d) Suppose a system containing 10:0 mol propane and 10:0 mol n-butane is brought to a

pressure of 1 bar and a temperature of �25 ıC. From your phase diagram, estimate the

compositions and amounts of both phases.

Table 13.4 Liquid and gas compositions in the two-phase

system of 2-propanol (A) and benzene at 45 ıC a

xA yA p=kPa xA yA p=kPa

0 0 29:89 0:5504 0:3692 35:32

0:0472 0:1467 33:66 0:6198 0:3951 34:58

0:0980 0:2066 35:21 0:7096 0:4378 33:02

0:2047 0:2663 36:27 0:8073 0:5107 30:28

0:2960 0:2953 36:45 0:9120 0:6658 25:24

0:3862 0:3211 36:29 0:9655 0:8252 21:30

0:4753 0:3463 35:93 1:0000 1:0000 18:14

aRef. [24].

13.12 Use the data in Table 13.4 to draw a pressure–composition phase diagram for the 2-propanol–

benzene system at 45 ıC. Label the axes and each area.

Table 13.5 Liquid and gas compositions in the two-

phase system of acetone (A) and chloroform at 35:2 ıC
a

xA yA p=kPa xA yA p=kPa

0 0 39:08 0:634 0:727 36:29

0:083 0:046 37:34 0:703 0:806 38:09

0:200 0:143 34:92 0:815 0:896 40:97

0:337 0:317 33:22 0:877 0:936 42:62

0:413 0:437 33:12 0:941 0:972 44:32

0:486 0:534 33:70 1:000 1:000 45:93

0:577 0:662 35:09

aRef. [167], p. 286.

13.13 Use the data in Table 13.5 to draw a pressure–composition phase diagram for the acetone–

chloroform system at 35:2 ıC. Label the axes and each area.
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